La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Genetic analysis of bacteriophage lambda prohead assembly in vitro

Identifieur interne : 005294 ( Main/Exploration ); précédent : 005293; suivant : 005295

A Genetic analysis of bacteriophage lambda prohead assembly in vitro

Auteurs : Helios Murialdo [Canada] ; Andrew Becker [Canada]

Source :

RBID : ISTEX:3D1E0DF827B5BD3FB11E84B69FCFBB0611B053E6

Abstract

Phage lambda DNA can be packaged into proheads to generate full heads in vitro. Upon addition of tails and other gene products to the cell-free assembly system, infectious phage are formed. This system provides a convenient assay to measure biologically active proheads. Thus, it has been shown that biologically active proheads are not produced in wild-type cells infected with phage mutants in genes B, C, Nu3 and E, nor in groE mutant cells infected with wild-type phage. However, proheads can be assembled in vitro upon incubation of a mixture of λNu3− and λE− infected-cell extracts. This complementation reaction has been analyzed using extracts prepared from wild-type or groE− cells infected with phage carrying amber mutations in one or two prohead genes. The conclusion from this analysis can be summarized as follows. 1. (1) Among all the possible combinations of extracts of cells infected with single amber mutants, the E− + Nu3− combination is the only one that gives substantial complementation in vitro. 2. (2) gpC† † The prefix gp stands for “gene product”. Therefore, gpC, etc., mean: products of gene C, etc. can be contributed by either member of the complementing pair of extracts. 3. (3) An E− B− extract will not complement a Nu3− extract. 4. (4) Active gpB can only be derived from a Nu3+ extract, and/or active gpNu3 can only be derived from a B+ extract. It is, therefore, probable that gpB and gpNu3 interact in vivo before gpE is polymerized. 5. (5) The lack of in vitro complementation exhibited by certain pairs of mutant extracts can be explained conveniently by postulating that essential gene products (such as gpE) are consumed in the assembly of abnormal capsid structures in vivo. 6. (6) The B−Nu3− extract (gpE and gpC donor) does not require the function of the host groE gene product to provide complementing activity. 7. (7) groE function is essential for the production of the complementing activity in E− C− extracts (gpB and gpNu3 donor). 8. (8) If gpB and gpNu3 are synthesized in the absence of wild-type groE function, the defect in complementing activity cannot be repaired by the addition of groE+ cell extracts. It thus appears that groE functions very early during prohead assembly, prior to the polymerization of the coat protein gpE.

Url:
DOI: 10.1016/0022-2836(78)90254-1


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>A Genetic analysis of bacteriophage lambda prohead assembly in vitro</title>
<author>
<name sortKey="Murialdo, Helios" sort="Murialdo, Helios" uniqKey="Murialdo H" first="Helios" last="Murialdo">Helios Murialdo</name>
</author>
<author>
<name sortKey="Becker, Andrew" sort="Becker, Andrew" uniqKey="Becker A" first="Andrew" last="Becker">Andrew Becker</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3D1E0DF827B5BD3FB11E84B69FCFBB0611B053E6</idno>
<date when="1978" year="1978">1978</date>
<idno type="doi">10.1016/0022-2836(78)90254-1</idno>
<idno type="url">https://api-v5.istex.fr/document/3D1E0DF827B5BD3FB11E84B69FCFBB0611B053E6/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000798</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000798</idno>
<idno type="wicri:Area/Istex/Curation">000798</idno>
<idno type="wicri:Area/Istex/Checkpoint">002851</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">002851</idno>
<idno type="wicri:doubleKey">0022-2836:1978:Murialdo H:a:genetic:analysis</idno>
<idno type="wicri:Area/Main/Merge">005D08</idno>
<idno type="wicri:Area/Main/Curation">005294</idno>
<idno type="wicri:Area/Main/Exploration">005294</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">A Genetic analysis of bacteriophage lambda prohead assembly in vitro</title>
<author>
<name sortKey="Murialdo, Helios" sort="Murialdo, Helios" uniqKey="Murialdo H" first="Helios" last="Murialdo">Helios Murialdo</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Medical Genetics, University of Toronto Toronto, Ontario M5S 1A8</wicri:regionArea>
<wicri:noRegion>Ontario M5S 1A8</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Becker, Andrew" sort="Becker, Andrew" uniqKey="Becker A" first="Andrew" last="Becker">Andrew Becker</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Medical Genetics, University of Toronto Toronto, Ontario M5S 1A8</wicri:regionArea>
<wicri:noRegion>Ontario M5S 1A8</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Molecular Biology</title>
<title level="j" type="abbrev">YJMBI</title>
<idno type="ISSN">0022-2836</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1978">1978</date>
<biblScope unit="volume">125</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="57">57</biblScope>
<biblScope unit="page" to="74">74</biblScope>
</imprint>
<idno type="ISSN">0022-2836</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-2836</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phage lambda DNA can be packaged into proheads to generate full heads in vitro. Upon addition of tails and other gene products to the cell-free assembly system, infectious phage are formed. This system provides a convenient assay to measure biologically active proheads. Thus, it has been shown that biologically active proheads are not produced in wild-type cells infected with phage mutants in genes B, C, Nu3 and E, nor in groE mutant cells infected with wild-type phage. However, proheads can be assembled in vitro upon incubation of a mixture of λNu3− and λE− infected-cell extracts. This complementation reaction has been analyzed using extracts prepared from wild-type or groE− cells infected with phage carrying amber mutations in one or two prohead genes. The conclusion from this analysis can be summarized as follows. 1. (1) Among all the possible combinations of extracts of cells infected with single amber mutants, the E− + Nu3− combination is the only one that gives substantial complementation in vitro. 2. (2) gpC† † The prefix gp stands for “gene product”. Therefore, gpC, etc., mean: products of gene C, etc. can be contributed by either member of the complementing pair of extracts. 3. (3) An E− B− extract will not complement a Nu3− extract. 4. (4) Active gpB can only be derived from a Nu3+ extract, and/or active gpNu3 can only be derived from a B+ extract. It is, therefore, probable that gpB and gpNu3 interact in vivo before gpE is polymerized. 5. (5) The lack of in vitro complementation exhibited by certain pairs of mutant extracts can be explained conveniently by postulating that essential gene products (such as gpE) are consumed in the assembly of abnormal capsid structures in vivo. 6. (6) The B−Nu3− extract (gpE and gpC donor) does not require the function of the host groE gene product to provide complementing activity. 7. (7) groE function is essential for the production of the complementing activity in E− C− extracts (gpB and gpNu3 donor). 8. (8) If gpB and gpNu3 are synthesized in the absence of wild-type groE function, the defect in complementing activity cannot be repaired by the addition of groE+ cell extracts. It thus appears that groE functions very early during prohead assembly, prior to the polymerization of the coat protein gpE.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Murialdo, Helios" sort="Murialdo, Helios" uniqKey="Murialdo H" first="Helios" last="Murialdo">Helios Murialdo</name>
</noRegion>
<name sortKey="Becker, Andrew" sort="Becker, Andrew" uniqKey="Becker A" first="Andrew" last="Becker">Andrew Becker</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005294 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005294 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:3D1E0DF827B5BD3FB11E84B69FCFBB0611B053E6
   |texte=   A Genetic analysis of bacteriophage lambda prohead assembly in vitro
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022